
1

 Generating effective test suite by minimization and
optimization of test cases in regression testing

Md. Nurul Amin

Department of Computer Science
University of North Dakota,

Grand Forks, USA
m.amin@und.edu

Chinedu Nwachukwu

Department of Computer Science
University of North Dakota,

Grand Forks, USA
chinedu.nwachukwu@und.edu

Wei Chen

Department of Computer Science
University of North Dakota,

Grand Forks, USA
wei.chen.2@und.edu

Abstract—

Regression testing works in finding defects when modification
occurs in a software. To improve the regression testing technique we
need to find out the most effective set of test cases that can figure out the
faults faster, efficiently and intensively. If the execution of a huge test
suite has limited time, we need to prioritize the test cases to keep the
most important test cases on top to be executed early. Now, a minimal
test suite with proper organization of execution level in test cases can
give better results in finding faults. In this paper, we combined a
minimization algorithm with a prioritization approach to build the most
effective test suite that is very efficient and quick in detecting faults in
testing of software systems.

Keywords— Regression Testing, Test case prioritazation, Test case
minimization, Fault Detection.

I. INTRODUCTION
Generating effective test cases is an essential part of software
testing. Every software made must be tested at some point in
time, either during the development stage or at the improvement
stage. All software’s must be passed through certain constraints
to ascertain its durability, strength its ability to meet the
customers’ requirements ad specifications. These processes can
be achieved via various stages in the software development cycle
and the results of each test is different at all levels. Because of
this, we put our focus on generating effective test suite to be able
to optimally run the test suite and get the best possible results
from the test execution. Going through various techniques in
research papers, journals, and topics of discussion, we could
discover that adequate algorithms and methodologies have been
proffered for the generation of test cases in new software
development stages. Despite this, we further researched into vital
& specific areas which uncovered the interesting part and essence
of regression testing. Regression’s testing objective is to test the
changed system per its specification and requirement. Regression
testing occurs after some actions and activities have been
performed in the system. Regression testing can be said to mean
“return of a bug” in simple terms. Regression testing can also be
defined as testing of software after its release or an upgrade.
Software’s always develop bugs when it is being modified over

time. Software modifications could be due to adding of new
functionality, improving performance, bug fixing, etc. The
modified software may break the functionality of the system that
previously worked. So, regression testing concentrates on finding
the issues after a major code change has been done [3][4].
There are several types of regression testing and different focus
areas, likewise several constraints related to regression testing
that make it difficult a task. Some of these constraints include but
not limited to time, cost constraints, developers target meeting,
software deadline, managers trying to keep project cost under
control, etc. All or almost all regression tests are based on the
functionality (Black box testing) and architecture (Grey box
testing) [3]. Our focus in regression testing is based on the
software system functionality (Black box test). This enables us to
focus on the effectiveness of the software system testing suite
which would directly be related to the system requirements or
specifications, for the success of the software system design and
development process.
A simple way of regression testing is the re-execution of all test
case suites for the entire software system which could be
extremely expensive. Software project deadlines, restrict the
performance of exhaustive testing, to successfully test for all
possible outcomes [3][4]. With this in mind, we were able to look
in-depth into the importance of regression testing and the
importance of eliminating the irrelevant test cases (Un-related
sections). We will need to minimize the test case number to focus
on the major areas affected by the modification effect, also we
need to further improve the strength of the test cases that will be
executed. A smaller subset of effective regression tests would
effectively aid in faster fault detection and the minimal
regression test sets act as a precursor to further testing [3]. Once
the minimization of the test cases has been achieved, we then
further prioritize the test cases as this would improve the weight
and strength of these select test cases. Prioritization organizes the
level of execution for the test cases and it gives an improved rate
of fault identification, when the test suite cannot be completed
[4]. Once the prioritization successfully rearranges the test cases,
maximum faults are bound to be detected in the shortest possible
time [4]. Our goal is to improve regression testing by finding out
the most effective set of test cases that will be used to find

2

system faults faster and effectively. Our proposed technique
works with minimization, that selects the best parts that are
directly or closely related to the affected or modified area in the
software system and prioritization, by setting high fault value in
test cases. The combination of both minimization and
prioritization builds a test suite that is most effective, efficient,
and quick in testing of software systems. The test suite would be
able to detect major faults even if execution of all prioritized test
cases cannot be completed. The combination further concentrates
on the effectiveness of the test cases and brings out the best from
its execution.

II. RELATED WORKS
Panigrahi and Mall (2012) [30] developed a Regression Test
Selection technique for object oriented programs and the UML
state machines for the affected classes. The control and the data
dependency also captured. Leung and White emphasized a
firewall for regression testing of system integration [17]. Laski
and Szemer provided an approach for test case selection which is
on the basis of cluster identification technique [18]. Dr.
ArvinderKaur and ShubhraGoyal [11] conceived a novel genetic
algorithm by implementing the prioritization on regressing
testing on time-limited surroundings based on entire fault
coverage. Average Percentage of Faults Detected (APFD) is
going to assist this algorithm to automate the process and analyze
the experiment outcomes.

D. Jefferey et al. [25] Proposed a novel technique serves for test
suite minimization in attempt to utilize extra coverage
information on test, where a couple of exclusive test cases in the
minimized suites that are redundant regarding the testing criteria
are exploited for test case minimization. James A. Jones et al.
[26] exhibited some original algorithms for test case
minimization and prioritization that can be adapted effectively
with modified condition/decision coverage, MC/DC. Ahmed and
Hermadi (2008) [31] proposed hybrid techniques possesses
minimization, combining modification and prioritization based
selection to spot a delegate division of all test cases which is
going to trigger different output performance on the new
software version.

According to, [32] test case reduction and selection optimization
in testing web services environment, test execution is expensive
as in most cases. The service revenue models are based on the
number of innovations or test executions. In principle, no
problem or limit to the number of test cases that are generated.
Most coverage calculations depend on calculating the number of
faults found by the test cases and not the number of test cases.
The number of faults or any related attribute are in the numerator,
while the number of test cases are in the denominator. Putting all
this into consideration, to optimize the coverage, we have to
increase the amount of faults or possible faults found while
decreasing the number of executed or generated test cases. The
focus can be broken down into two categories: - Develop a pre-
test execution component that can evaluate generated test cases
and optimize the selection from those generated test cases for
execution. The second is the utilization of historical usage
sessions that can be provided by clients or service provider. Such
usage sessions can direct and optimize the process of test case

generation and execution. This methodology increases the
coverage and reduces the execution cycles in creating a pre-
execution component on the client side to perform initial
validations on the generated test cases before possible validation
for execution.
In, [33] faulty and irrelevant test cases can be selected. Much
more factors need to be placed into consideration during the
selection process. Test cases can be generated from specification
represented using the Unified Modeling Language (UML) [3].
Steiner tree algorithm inputs are given as a set of terminals with
directed graph G. The changed nodes are included in the test path
by defining them as terminal. Regression test selection
techniques have been used in [35] [36] [37] to select a subset of
test cases. The objective is to check if the modified program has
the same behavior as the previous acceptable version of the
program running on T, a set of test cases [34]. UML activity
diagrams have been used for specification. A minimal set of test
cases are generated to go through the modification path in order
to test the system effectively.

Badhera et al. [9] showcased a technique to run the changed code
line sections with small scale number test cases. Prioritization
tries to select the test cases from the suite by executing fewer
code lines. Hence, obtaining faster code coverage should be
reached for the sake of detection of faults. Bixin Li et al. (2012)
[30] put forward a method of selecting test cases in terms of
regression testing of composite service, based on extensible
BPEL flow graph. B. Jiang et al. [10] Proposed a method called
ART-based prioritization by accepting test suite as input,
generates the output in descending order based on one algorithm.
Fundamentally, selecting one test case from the candidate set
generated first until all test cases have been covered. Goal
functions are created for counting the distance between two test
cases and how to choose a test case from the candidate set. Code
coverage data eventually decide the distance counting of two test
cases. After that, a candidate test case that is pertinent to distance
test cases which has been prioritized beforehand.

H. Do et al. [12] illustrated the significance of test case
prioritization using time constraints operator and unearthed the
constraints which modifies the technique performance. What’s
more, carried out three groups of experiments to disclose the time
constraints. The experiment results showcase that the cost
effectiveness and cost benefit trade-offs significantly depend on
the time constraint factor by using this technique. Another
experiment replicates the first experiment, counting a couple of
threats to verify the amount of fault currently. Third experiment
operates the amount of program faults to inspect the effect of
imprecision on prioritization and showcases the pertinent cost-
effectiveness of prioritization techniques.
Park et al. [13] created a cost awareness model serves to test case
prioritization and fault severities which disclosed in the former
test execution. Simultaneously, it doesn’t dynamically modify
one result to another. Mohamed A Shameem et al. (2013)
Proposed a standard for evaluating the proportion of fault
detection. This algorithm screens the fault in advance and
validation of prioritized test cases are compared to the non-
prioritized cases by Average Percentage of Fault Detection
(APFD).

3

M. Yoon et al. [14] put forward an approach to prioritize original
test cases by gauging the requirements of risk exposure value and
measuring risk objects. Further it deciding the test case priority
via evaluated values after counting the pertinent test cases.
Furthermore, we prove our approach is effective by empirical
studies in terms of Average Percentage of Fault Detected (APFD)
and fault severity.
R. Krishnamoorthi and S. A. Mary [15] exhibited a prototype to
prioritizes system test cases on the basis of six factors: customer
priority, changes in requirement, implementation complexity,
usability, application flow and fault impact. This technique is
scrutinized in three periods with student and industrial projects.
S. Raju and G.V. Uma [16] inaugurated a cluster-based test case
prioritization technique. Test cases are collected on the basis of
their dynamic runtime behavior. Researchers subtracted the
necessary number of pair-wise comparisons. Simultaneously, a
value-driven approach to system-level test case prioritization was
proposed by researches, which process in prioritizing test
requirements. In this cases, test cases prioritization is based on
four elements: rate of fault detection, requirements volatility,
fault impact and implementation complexity.
In [17], [20], Rothermel et al. were the leader to concentrate on
test case prioritization predicaments which paved the way for
them to showcase six varying tactics on the basis of the coverage
of statement or branches. In [21], Li et al. offers experiential
study results of metaheuristic searching techniques and greedy
searching techniques applied to programs for regression test case
prioritization. In [24], Praveen et al. commenced an original test
case prioritization algorithm that count average faults detected
per minute. A Regression Testing Technique for Test Case
Prioritization based on Code Coverage criteria is advocated by
K.K. Aggarwal in [23]. Devised and execute an experiment under
control, scrutinizing If test case prioritization could be validated
on Java programs using Junit and assessed that test case
prioritization is able to dramatically enhance the rate of fault
detection of JUnit test suites. S. Elbaum et al. [27] showcased
that all prioritization techniques considered can improve the rate
of fault detection of test suites. Huang (2010) [28] has proposed a
cost cognizant test case prioritization technique on the basis of
the usage of historical records and genetic algorithm. They
execute an experiment under control to appraise the proposed
technique’s effectiveness. This technique however does not care
about the test cases similarity. Sabharwal (2011) [29] has put
forward an approach for prioritization test case scenarios
obtained from activity diagram using the notion of elementary
information flow metric and genetic algorithm. Sabharwal (2011)
[29] has generated prioritized test case in static testing utilizing
genetic algorithm. They have employed a similar approach as to
prioritize test case scenarios obtained from source code in static
testing.

III. PROBLEM DEFINITION
Test case reduction from a large test suite is a big challenge as
regression testing requires very little time to run if efficiency is
key. When the need to remove test cases arise, we then should
consider focusing on related test cases over affected areas which
should be tested due to modification. A graph based test case
selection approach can help us in finding out the major areas that

are mandatory for testing. After selecting important test cases, we
then prioritize them, so that an effective test suite can be
generated. This test suite can then figure out maximum defects,
in a software system, in the shortest time possible.

IV. STEINER TREE ALGORITHM
Steiner tree algorithm is a combinatorial, optimization, problem
solving graph based approach that gets the optimal paths. The
basic difference with Steiner tree and spanning tree is that unlike
spanning tree, Steiner tree does not span all vertices in the graph
[3], it only spans a subset of the path from root node to leaf nodes
in the terminology. This process brings out the most cost
effective set of test cases. In Steiner tree algorithm nodes are
divided into two categories, terminals, and non-terminals.
Terminals are vertices that must be included in the solution. Non-
terminals may be included when necessary to connect with
terminals. Edge weight are used to define cost in the path of
Steiner tree. In-order to reduce cost, non-terminal vertices with
lower edge weights may be included in certain areas.

FIG a: A Simple Graph with terminal nodes

FIG b: Steiner tree generation of the Simple graph.

4

The above figures show an example of a simple graph and its
Steiner tree.
In the given directed graph, G(V, E, w) the components are
V, set of vertices
E, set of edges
r, root node.
w, is the weight of edges (> 0).

Our goal is to find out a minimal cost tree path in this directed
graph that connects all terminals to root node r. In [1][2] the
Steiner algorithm that has been discussed earlier, we adopted the
methodology as it can be used in reaching our desired goal. The
goal is to find out a subset of edges that comes down from root to
terminal node with minimal weight.

 Algorithm 1: Steiner Algorithm

Algorithm: MST-Steiner

Input: A graph G = (V, E, w) and a terminal set L ⊆ V
Output: A Steiner tree

1. Construct the metric closure GL on the terminal set L
 2. Find an MST TL on GL
3. T <- Φ
4. For each edge e = (u, v) ∈ E(TL) in a depth-first-search
order of TL do
 4.1 Find a shortest path P from u to v on G
 4.2 If P contains less than two vertices in T then
 Add P to T
 Else
Let pi and pj be the first and the last vertices already in T Add
sub paths from u to pi and from pj to v to T
 5. Output T

For example, consider the FIG: a – Simple graph with terminal
nodes, graph with 'r' as the root.
The square nodes in the bottom indicate terminals and weights
are given beside the edges. FIG: b – Steiner tree generation of
the simple graph, shows the Steiner tree with minimized nodes
and edges.

V. TEST CASE IN GRAPH
A Finite State Machine (FSM) diagram consists of a lot of

execution paths, from the start state to the final state consisting of
transactions and activities.

A Test Case (TC) can be defined as a full path in finite state
machine (FSM) diagram.

tc ∈	TC, tc = a0 → t0 → a1 → t1 → → tn → am
where ai ∈	A, ti ∈	T,
 a0 is the initial state,
am is the final state.
TC is the set of test cases

VI. DETECTING MINIMIZED TEST SUITE IN REGRESSION TESTING
Test Suite minimization is a NP-hard real world problem [8]. It
consists of selecting a minimal set of test cases that covers a
given set of requirements and minimizes the amount of resources
required for its execution. After modifying the new software
version, we need to find out the affected areas first. Then we
figure out the relevant test cases from root node to terminal node.
Our work is to find out the minimized number of test cases that
will detect faults in the modification done on the software
system. As it is a graph based optimization approach, we would
find out the relevant path from root to terminal nodes for test
cases.
At first, we need to draw the high-level architecture diagram to
find out the interaction with different modules of the software.
Secondly, we draw the low-level architecture diagram, from
which we figure out the data flow among different states which
will help to design the Control Flow Graph (CFG) diagram.
Finite State Machine (FSM) diagram is a pre-requisite to draw
the Control Flow Graph (CFG) of the software system. From the
control flow graph, we can find out the number of nodes
connected to our newly modified node. So, we converted our
finite state machine (FSM) diagram to Control Flow
Graph(CFG). Each state becomes a node in the CFG and control
flow lines become the edges. All weights in this case, were
measured based on interaction with other nodes which will
introduce the coverage of nodes in the program execution. From
our references for this work, each weight calculation is based on
the number of incoming and outgoing edges from a node.

Weight(e) = (ni)in X (nj)out

where (ni)in is the number of incoming lines in node ni and (nj)out
is the number of outgoing lines in node nj and e is the edge
connecting ni and nj.

VI.I . ALGORITHM
From our control flow graph, we need to find out the terminal
nodes, then we can find the path from root to terminal nodes
where the program would stop after some iteration. The process
of selecting terminal node is given below:

a. The root node should be a terminal node in CFG.
b. Consider the stopping nodes, where the user will get

some value as a terminal node.
c. Make the modification node a terminal node.

Although our testing method is black box based, we need to get
the location of the modified node in the program control flow
graph by going through the program. This is essential because the
modification node will come in the test path as a part of
regression testing.

Algorithm 2: Test Case Generating Algorithm

Input: A directed graph G = (V, E, w) with a terminal set L ⊂ V

Output: TC, a set of Test Cases, that should be used to test the
system.

5

1. For each node in the finite state machine diagram A, do

 1.1. If node is a Start State, Stop State, Transition
State, Multi State, convert into node in CFG.

2. For an edge in the finite state machine diagram, A do
 2.1 If an edge has a cycle(loop), unfold the loop
up-to 2 iterations. Then add edges and nodes to CFG.
 2.2 Else, add the edge in CFG directly.

3. Calculate the edge values using number of in and outgoing
vertices.
4. Define all terminal edges in the graph using square
notification.
5.Minimize the graph using Steiner tree algorithm.
6. Generate TCs, from root node to terminal nodes including
modification node in execution paths.

VII. TEST CASE PRIORITIZATION
The main objective of this technique is to meet the specific goals,
within the stipulated time and cost, faster than it would be if they
were not prioritized [7]. From Steiner tree algorithm, we
generated a minimal number of test cases that is adequate to test
the system after program modification. Sometimes the system
could be so complex that Steiner tree algorithm would bring out a
large number of test cases. In these circumstances, prioritization
can help to sort the test cases in proper level of major faults
coverage. In our proposed methodology, we considered the code
coverage and fault values of test cases in our prioritization. We
had an execution history when our test cases found faults before
fixing them or adding new features. We then use the previous
results of execution to get the faults values of test cases. The test
cases that have a higher fault value with most coverage nodes
should be prioritized first. We are now able to get an effective set
of test cases with proper level of execution in finding defects.

Prioritization weight was assigned in every test case before
sorting them accordingly.

 Fault value
Prioritization Weight of a TC =
 Code coverage nodes

VIII. METHODOLOGY AND IMPLEMENTATION
For implementation purpose, we developed a C program with
basic functions, loops and constructs. This software program was
used during the implementation of our approach and this would
be explained extensively with the use of Finite State Machine
diagrams.
The C program – STUDENT GRADE DATABASE (SGD) is a
program that utilizes functions of C programing construct, it has
a MENU for selecting the options for execution. This MENU
would act as the program start page and direct you to the selected
module program, that you wish to execute. Once execution is
complete, you will be directed back to the menu for onward
action, which includes the following tasks “New Student Entry,

Save to Database, Load Database, Search for Student
Information, Enter Student Grade, Delete Student from Database
and Exit”.
FIG: 1 – (HIGH LEVEL ARCHITECTURE) Shows the High
Level Finite state machine diagram for the software. This
diagram shows the construct and connection of the modules of
the program. With this diagram, you will be able to understand
the aim and objective of the program.
Looking at the diagram, we are unable to interpret the stages of
the program flow as it isn’t detailed enough to display all the
required nodes.
The program SGD was constructed with the aim of using it as an
object of implementation. In accomplishing this, we will need to
clearly define the steps and existing paths in the program from
which we would be able to derive the initial test cases that will be
used for implementation. The clarification and path definition
was done by FIG: 2 – (LOW LEVEL) This shows the Low level
finite state diagram for Student Grade Database. It displays
various levels and gives you a better understanding of the process
flow of the software. Based on the diagram, you will be able to
execute the software program step by step just as it would be
executed. Because of this diagram, we were able to generate test
cases (manually) that will be used in testing the software for
errors and defects.
Test cases generated have different execution paths and
execution functions.
The execution path of the test cases was clearly defined in
TABLE 1: - Showing 81 generated test cases. This table shows
the code coverage based on the levels and program flow paths
during its execution. Based on these paths we were able to detect
faults in the software system program and all were indicated in
the table. These 81 detected test cases are to be used to test the
full performance and functional stability of the software system.
Remembering our goal is not the testing of the whole software
system, we then selected one of the major faults detected,
modified the program and fixed the error that was detected. Once
the selected issue was fixed, we then arrived at our desired
destination. This is the stage where regression testing can be
implemented.
Recalling our goal – generation of effective test suite for
regression testing. Removing the un-related test suite, then
considering the affected area that should be tested due to
modification. A graph based test case selection approach can help
us find the major areas related to the modified area for testing.
This graph based approach can only be achieved with the use of a
control flow graph for the SGD software program. FIG: 3 –
(CONTROL FLOW GRAPH) Shows the Control Flow Graph of
Student Grade Database. This uses a numbering approach of the
program flow and execution paths. The Control Flow Graph
shows the weights assigned for the edges. With this graph, we are
now able to apply Steiner Tree Algorithm (STA) which uses the
graph based approach in test case minimization [3]. This
algorithm has been selected due to its ability to select efficiently,
the best test case paths for execution of the modified area. Using
the weight assigned for the edges, we are able to define the root,
terminal and non-terminal nodes [3]. Steiner Tree Algorithm
(STA) finds the shortest part through the modified area, from
root node to terminal node, finding all possible test cases for the
modified area [3].

6

FIG 1: HIGH LEVEL ARCHITECTURE DIAGRAM

FIG: 4 – Shows the Control Flow Graph for SGD with the Root,
Terminal and non-terminal nodes defined. Node 1 – Root node –
is the program start node in which the execution commences,
Node 1 – Terminal node – is the program output node or
continuity node for some program iteration and Non-Terminal
Nodes – these are the connecting nodes through the execution
paths [3]. The Steiner Tree Algorithm (STA) generates a graph
used in selecting the minimized test case paths from the graph
which is shown below: -
Minimized selected test paths

1st. 1à21à8à9à10à13à1
2nd. 1à22à23à24à27à9à10à13à1
3rd. 1à30à23à24à27à9à10à13à1
4th. 1à31à23à24à27à9à10à13à1
5th. 1à22à23à25à28à9à10à13à1
6th. 1à30à23à25à28à9à10à13à1
7th. 1à31à23à25à28à9à10à13à1
8th. 1à22à23à26à29à9à10à13à1
9th. 1à30à23à26à29à9à10à13à1
10th. 1à31à23à26à29à9à10à13à1

FIG: 5 – Showing the Control Flow Graph for SGD with the
selected nodes for the above paths. This paths are the minimized
test cases from the initial 81 derived test cases.
TABLE: 2 – Listing out the test cases derived from the paths
above, showing the No of Faults that can be detected using this
test suite. Also, the Total Coverage node number is shown in the
table, showing the paths that it would reach during execution.
These test cases are adequate enough to sufficiently test the
software system’s modified area but our goal is not to find
adequate test cases. Our goal is to generate the most efficient and
effective test suite for regression testing.
To achieve this, we need to prioritize this test suite according to
some criteria. Test case prioritization helps in sorting the test
cases in proper level of covering major faults [6]. In
prioritization, we make use of the test case code coverage and
fault values of the minimized test cases. A value for weighing the
strength of each test case has been defined and it is called
“Priority Weight (PW)”. The Priority weight is gotten by

7

FIG 2: LOW LEVEL ARCHITECTURAL DIAGRAM

TABLE 1: INITIAL TEST CASES GENERATED FOR THE SGD

8

FIG 3: CONTROL FLOW GRAPH FOR SGD

9

FIG 4: CFG SHOWING ROOT, TERMINAL AND CHANGE NODE

FIG 5: CFG WITH SELECTED FLOW PATHS USING STEINER ALGORITHM

10

TABLE 2: MINIMIZED TEST CASES

dividing the Fault Value (No of faults detected) with the Code
Coverage Nodes (No of execution nodes it passed). This value
shows the strength of each of the test cases and we would be able
to list them in descending order of priority.

Priority Weight (PW) = Fault Value
 __

 Code Coverage Nodes

Once the priority weight for all the test cases have been derived,
as shown in TABLE: 3 – Showing No of Faults, Code coverage
nodes and Priority Weight (PW), we are now able to rearrange
the minimized test cases according descending order of priority.

TABLE 3: Derived priority weights for all test cases

Minimized TCs
TC
Index

Number
of faults

Coverage
Node

Priority
Weight

TC5 tc 1 4 6 0.666
TC19 tc 2 6 9 0.666
TC26 tc 3 5 9 0.555
TC33 tc 4 4 9 0.444
TC40 tc 5 6 9 0.666
TC54 tc 6 4 9 0.444
TC47 tc 7 5 9 0.555
TC61 tc 8 7 9 0.7777
TC68 tc 9 6 9 0.6666
TC75 tc 10 5 9 0.555

The best, efficient and most effective test cases would then be
executed first as arranged in order of priority.

TABLE: 4 – Showing the prioritized test cases and all its
corresponding values used in achieving the prioritization.

TABLE 4: Prioritized Test Cases arranged in descending
order

Prioritization
TCs TC Index

Number of
faults

Coverage
Node

Priority
Weight

TC61 tc 1 7 9 0.7777
TC68 tc 2 6 9 0.6666
TC5 tc 3 4 6 0.666

TC19 tc 4 6 9 0.666
TC40 tc 5 6 9 0.666
TC26 tc 6 5 9 0.555
TC47 tc 7 5 9 0.555
TC75 tc 8 5 9 0.555
TC33 tc 9 4 9 0.444
TC54 tc 10 4 9 0.444

IX. RESULTS
Test Case fault detection effectiveness, was evaluated by a metric
called Average Percentage of Fault Detected (APFD). To
calculate APFD value, we needed to consider the index of test
cases after prioritization in minimized test suite. If T be a test
suite with n number of test cases, F be a set of m faults detected
by T, and TFi be the first test case index in ordering T that
reveals fault i. The following equation shows the APFD value for
prioritizing T.

 TF1 + TF2 + ……. + TFm + (1 / 2n)
APFD = 1 -
 nm
Researchers have been using this metric for evaluating their
prioritization techniques and found that it produces very
significant result [6]. To find the average number of faults
detected in each test suite APFD metric is used significantly.

11

APFD values range from 0 to 1 and its percentage shows how
long the faults have been covered. In our paper the APFD metric
value before prioritization is 0.975, and the APFD value after
prioritization is 0.9769.

 Previous Test Case Order:
 TC1, TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10

APFD value: 1- (1*3+1+2+2*4+3*3+4*2+8) / (10*52) + 1 /
(2*10) = 0.975

After Prioritization Test Case Order:
TC8, TC9, TC1, TC2, TC5, TC3, TC7, TC10, TC4, TC6.

APFD value: 1- (3*3+1+1+4*1+3*2+2*8+1) / (10*52) + 1 /
(2*10) = 0.9769

 The following graph shows the APFD value comparison for

both prioritized and non-prioritized test suites.

Figure: APFD metric value for test suites

The above graph shows that more faults can be detected when
test cases are prioritized rather than random execution.

X. CONCLUSION

XI. ACKNOWLEDGMENT (HEADING 5)
The preferred spelling of the word “acknowledgment” in

America is without an “e” after the “g.” Avoid the stilted
expression “one of us (R. B. G.) thanks ...”. Instead, try “R. B. G.
thanks...”. Put sponsor acknowledgments in the unnumbered
footnote on the first page.

XII. REFERENCES
[1] T. Rothvo. Directed Steiner tree and the Lasserre hierarchy. CoRR,

abs/1111.54-73, 2011. [10
[2] Bang Ye Wu: A simple approximation algorithm for the internal Steiner

minimum tree. CoRR abs/1307.3822, 2013. I.S. Jacobs and C.P. Bean,
“Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III,
G.T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.

[3] P. G. Sapna, B. Arunkumar. An Approach for Generating Minimal Test
Cases for Regression Testing. Procedia Computer Science 47 (2015) 188 –
196. Elsevier B.V. March 2015

[4] T. Muthusamy, K. Seetharaman. Effectiveness of Test Case Prioritization
Techniques based on Regression Testing. International Journal of Software
Engineering and Application (IJSEA), No 6. November 2014

[5] -àS. Elbaum, A. Malishevsky, G. Rothernel. Test Case Prioritization: A
Family of Empirical Studies. IEEE transactions on Software Engineering.
28(2), 159 – 182. February 2002

[6] Thillaikarasi Muthusamy and Dr. Seetharaman.K, Effeciveness of test case
prioritization techniques based on regression testing. International Journal
of Software Engineering & Applications (IJSEA), Vol.5, No.6, November
2014.

[7] Ahlam Ansari , Anam Khan , Alisha Khan, Konain Mukadam, Optimized
Regression Test using Test case Prioritization. 7th International Conference
on Communication, Computing and Virtualization 2016.

[8] Martin Pedemonte, Francisco Luna , Enrique Alba. A systolic Genetic
Search for reducing the exdcution cost of regression testing. Applied Soft
Computing 49 (2016)1145 – 1161.

[9] Mohamed A Shameem and N Kanagavalli.2013. Dependency Detection for
Regression Testing using Test Case Prioritization Techniques. International
Journal of Computer ApplicationsVol 65(14): pp:20-25.

[10] M. Yoon, E. Lee, M. Song and B. Choi.2012. A Test Case Prioritization
through Correlation of Requirement and Risk. Journal of Software
Engineering and Applications. Vol. 5 No. 10. pp. 823835. doi:
10.4236/jsea.2012.510095.

[11] R. Abreu, P. Zoeteweij, A.J.C. van Gemund.2009. Spectrum-based multiple
faultlocalization, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 88–99.

[12] R. Krishnamoorthi and S. A. Mary.2009.Factor Oriented Requirement
Coverage Based System Test Case Prioritization of New and Regression
Test Cases. Information and Software Technology. Vol. 51.No. 4. pp. 799-
808.

[13] S. Raju and G.V. Uma.2012. An Efficient method to Achieve Effective
Test Case Prioritization in Regression Testing using Prioritization Factors.
Asian Journal of Information Technology. Vol:11.issue:5.pp:169-180.DOI:
10.3923/ajit.2012.169.180

[14] R. Ramler, S. Biffl and P. Grunbacher “Value-Based Management of
Software Testing”,Book Chapter.

[15] L. Zhang, S. S. Hou, C. Guo, T. Xie and H. Mei “Time Aware Test- Case
Prioritization using Integer Linear Programming”, ISSTA’09 , Chicago,
Illinois,USA, Jul 2009

[16] Z. Li, M. Harman and R. M. Hierons “Search Algorithms for Regression
Test Case Prioritization”,IEEE Trans. on Software Engineering, vol. 33, no.
4, Apr 2007

[17] Leung HKN, White L. Insights into testing and regression testing global
variables. Journal of Software Maintenance 1990; 2(4):209–222.

[18] Laski J, Szermer W. Identification of program modifications and its
applications in software maintenance. Proceedings of the International
Conference on Software Maintenance (ICSM 1992), IEEE Computer
Society Press, 1992; 282–290.

[19] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Test Case
Prioritization: An Empirical Study,” Proc. Int’l Conf. Software
Maintenance, pp. 179-188, Sept. 1999.

[20] S. Elbaum, A. Malishevsky, and G.Rothermel Test case prioritization: A
family of empirical studies. IEEE Transactions on Software Engineering,
February 2002.

[21] Z. Li, M. Harman, and R. M. Hierons. Search Algorithms for Regression
Test Case Prioritization, IEEE Transaction on Software Engineering, vol.
33, no. 4, pp. 225-237, 2007.

[22] Praveen Ranjan Srivastava, Test Case Prioritization, Journal of Theoretical
and Applied Information Technology, pp. 178-181, 2008.

[23] K. K. Aggrawal , Yogesh Singh , A. Kaur, Code coverage based technique
for prioritizing test cases for regression testing, ACM SIGSOFT Software
Engineering Notes, v.29 n.5, September 2004.

[24] Do, H., Rothermel, G. and Kinneer, A. (2006) Prioritizing JUnit Test Cases:
An Empirical Assessment and Cost- Benefits Analysis. Springer Science
Empire Software Engineering, 11, 33-70.

0.974

0.9745

0.975

0.9755

0.976

0.9765

0.977

0

0.975

0.9769

Before Prioritization After Prioritization

12

[25] Jeffrey, D. and Gupta, N. (2007) Improving Fault Detection Capability by
Selectively Retaining Test Cases during a Test Suite Reduction. IEEE
Transactions on Software Engineering, 33, 108-123.

[26] Jones, J.A. and Harrold, M.J. (2003) Test-Suite Reduction and Prioritization
for Modified Condition/Decision Coverage. IEEE Transactions on Software
Engineering, 29, 195-209.
http://dx.doi.org/10.1109/TSE.2003.1183927

[27] [19] Elbaum, S., Malishevsky, A.G. and Rothermel, G. (2002) Test Case
Prioritization: A Family of Empirical Studies. IEEE Transactions on
Software Engineering, 28, 159-182. http://dx.doi.org/10.1109/32.988497

[28] Huang, Y., 2010. Hypergraph based visual categorization and
segmentation. The State University of New Jersey.

[29] Sabharwal, S., 2011. A genetic algorithm based approach for prioritization
of test case scenarios in static testing. Proceedings of the 2nd International
Conference on Computer and Communication Technology, Sept. 15-17,
IEEE Xplore Press, Allahabad, pp: 304-309. DOI:
10.1109/ICCCT.2011.6075160

[30] Panigrahi, C.R. and R. Mall, 2012. A hybrid regression test selection
technique for object-oriented programs. Int. J. Soft. Eng. Applic., 6: 17-34.

[31] Ahmed, M.A. and I. Hermadi, 2008. GA-based multiple paths test data
generator. J. Comput. Operat. Res., 35: 3107-3124. DOI:
10.1016/j.cor.2007.01.012

[32] Test cases reduction and selection optimization in testing web services by
Izzat Alsmadi & Sascha Alda, I.J. Information Engineering and Electronic
Business, 2012, 5, 1-8, 2012

[33] Dr. D. Jeya Mala & Dr V Mohan., Quality improvement & optimization of
test cases - A hybrid genetic algorithm based approach, ACM SIGSOFT
Software Engineering Notes Page 1 May 2010 Volume 35 Number 3.

[34] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[35] Sapna P.G. and Hrushikesha Mohanty. Prioritization of scenarios based on
UML activity diagrams. In 1st International Conference on Computational
Intelligence, Communication Systems and Networks(CICSYN 2009), pages
271-276. IEEE Computer Society, 2009.

[36] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. Software Engineering,27(10):929-948, 2001.

[37] L.C. Briand, Y. Labiche, G. Soccar. Automating Impact Analysis and
Regression Test Selection based on UML Designs. Proceedings of the
International Conference on Software Maintenance (ICSM 2002), IEEE
Computer Soceity, pp.1-10, 2002.

